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Hydromagnetic Taylor--Couette flow:
wavy modes
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We investigate magnetic Taylor–Couette flow in the presence of an imposed axial
magnetic field. First we calculate nonlinear steady axisymmetric solutions and de-
termine how their strength depends on the applied magnetic field. Then we perturb
these solutions to find the critical Reynolds numbers for the appearance of wavy
modes, and the related wave speeds, at increasing magnetic field strength. We find
that values of imposed magnetic field which alter only slightly the transition from
circular-Couette flow to Taylor-vortex flow, can shift the transition from Taylor-vortex
flow to wavy modes by a substantial amount. The results are compared to those for
onset in the absence of a magnetic field.

1. Introduction
Taylor–Couette flow is one of the most important examples of fluid systems that

exhibits the spontaneous formation of increasingly complex dynamic flow structures.
This occurs through a sequence of transitions which take place as the drive is
increased (Andereck, Liu & Swinney 1986). The first transition takes place when
circular-Couette flow (CCF) becomes unstable to axisymmetric disturbances which
grow into a toroidal flow pattern (Taylor-vortex flow – TVF). The second transition
occurs when the Taylor vortices become unstable to non-axisymmetric perturbations,
which results in a variety of time-dependent flows (wavy modes). More transitions take
place at higher Reynolds numbers and a great number of variations of the original
pattern observed by Taylor (1923) have been investigated (Egbers & Pfister 2000).

Our concern is Taylor–Couette flow in the presence of an axially imposed mag-
netic field. Despite early theoretical (Chandrasekhar 1961) and experimental interest
(Donnelly & Ozima 1962), this case has been much less studied. The success of
recent dynamo experiments (Gailitis et al. 2001; Stieglitz & Müller 2001) and the
astrophysical interest in the magneto-rotational instability (Ji et al. 2001; Rüdiger &
Zhang 2001) add further motivation.

In our previous paper (Willis & Barenghi 2002) we presented a convenient numer-
ical formulation of the hydromagnetic Taylor–Couette flow problem. We determined
critical Reynolds numbers for the appearance of axisymmetric Taylor vortices, cal-
culated finite-amplitude solutions and compared our results with existing theoretical
work and experiments. The aim of this paper is to continue this investigation into
the three-dimensional time-dependent flow regime of the wavy modes.

2. Formulation and method of solution
Throughout this work we shall use the same notation as that of our previous

paper. The fluid is contained between two concentric cylinders of inner radius R1
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and outer radius R2 which rotate at constant angular velocity Ω1 and Ω2 respectively.
We make the usual assumption that the cylinders have infinite height, use cylindrical
coordinates (r, θ, z), and assume that a constant magnetic field B0 = µ0H ẑ is applied
externally in the axial direction.

We introduce the following dimensionless parameters: radius ratio (η), Reynolds
numbers (Re1 and Re2), Hartmann number (Q) and magnetic Prandtl number (ξ)
defined as

η = R1/R2, Re i =
RiΩiδ

ν
(i = 1, 2), Q =

µ2
0H

2σδ2

ρν
, ξ =

ν

λ
, (2.1)

where δ is the gap width, ρ the density, ν the kinematic viscosity, λ the magnetic
diffusivity and µ0 the magnetic permeability. Hereafter we assume that ρ, ν, λ and µ0

are constant.
The dimensionless equations governing incompressible hydromagnetic flow are

∂tu+ (u · ∇)u = −∇p+ ∇2u+
Q

ξ
(∇ ∧ B) ∧ B, ∇ · u = 0, (2.2a, b)

∂tB =
1

ξ
∇2B + ∇ ∧ (u ∧ B), ∇ · B = 0. (2.2c, d )

These equations have as a steady-state solution, ũ, the circular-Couette flow, where

ũr = ũz = 0, ũθ = Ar + B/r. (2.3)

The constants A and B are determined by the no-slip boundary conditions.
Boundary conditions for the magnetic field can have a major influence on the flow,

as found by Hollerbach & Skinner (2001) when studying the analogous problem in
spherical geometry. Here the axially imposed magnetic field does not penetrate the
boundaries but there are still differences with the theoretical results of Chandrasekhar
(1961) for insulating and perfectly conducting cylinders. However, in experiments by
Donnelly & Ozima (1962) using mercury, only a small difference was found between
results with Perspex and stainless-steel containers. Therefore for practical reasons we
take insulating boundary conditions for the magnetic field. If the magnetic field is
expanded over modes of the form

B(r, θ, z) = B(r) ei(αz+mθ), (2.4)

then the boundary conditions are

α = m = 0: Bθ = Bz = 0; (2.5a)

α = 0, m 6= 0: ∂θBr = ±mBθ, Bz = 0; (2.5b)

α 6= 0: ∂zBr =
∂rBm

Bm

Bz,
1

r
∂θBz = ∂zBθ. (2.5c)

The function Bm(r) denotes the modified Bessel functions Im(αr) and Km(αr), and the
boundary condition (2.5a–c) is evaluated at R1 and R2 respectively, where for ± we
take + at R1 and − at R2.

The magnetic Prandtl number, ξ, is very small in liquid metals available in the
laboratory (mercury, ξ = 0.145× 10−6; liquid sodium at 120 ◦C, ξ = 0.89× 10−5). We
set

B = B0 + ξb, (2.6)

where B0 is an externally applied field. In the limit ξ → 0 the equations governing
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the disturbance to the circular-Couette flow become

(∂t − ∇2)u′ = N − ∇p′, ∇ · u′ = 0, (2.7a, b)

∇2b = NB, ∇ · b = 0, (2.7c, d )

where

N = Q(∇ ∧ b) ∧ B0 − (u · ∇)u′ − (u′ · ∇)ũ, NB = −∇ ∧ (u ∧ B0). (2.7e, f )

The finite-amplitude disturbance u′ = u− ũ satisfies homogeneous Dirichlet boundary
conditions. The magnetic field b satisfies the same boundary conditions as B and is
completely defined by the velocity at any particular time.

The method of solution of (2.7a–d ) was the topic of our earlier paper, Willis
& Barenghi (2002), which contains further details, including tests of the numerical
method and comparison with calculations performed by others. Here it suffices to say
that to ensure divergence-free fields we adopt the toroidal–poloidal decomposition

A = ψ0θ̂ + φ0ẑ + ∇ ∧ (ψr) + ∇ ∧ ∇ ∧ (φr), (2.8)

where ψ(r, t, z), φ(r, t, z) and ψ0(r), φ0(r) contain the periodic and non-periodic parts
of the field respectively. The potentials ψ, φ are expanded over Fourier modes in the
periodic coordinates and Chebyshev polynomials in the radial direction.

The governing equations for the magnetic field are the r-components of the induc-
tion equation and its first curl. Although it is common to take the first and second
curls for the velocity, we follow the procedure applied to the magnetic field and
take the r-components of the momentum equation and its first curl. As the pressure
has not been eliminated, we also take the divergence to obtain the pressure-Poisson
equation.

Whilst the decomposition (2.8) raises the order of the equations, the extra derivatives
appear in the periodic coordinates, so no extra boundary conditions are required. All
five governing equations are second order in r. This property makes them easy to
timestep stably and accurately, even for fully nonlinear three-dimensional flows, and
simplifies implementation a great deal.

The equations are collocated in the radial direction and the nonlinear terms
(2.7e, f ) are evaluated pseudo-spectrally where necessary. Explicit Adams–Bashforth
timestepping is used on the nonlinear terms and implicit Crank–Nicolson on the
linear terms.

3. An imposed axial field
The equation defining the magnetic field, (2.7c), may be re-written as

∇ ∧ ∇ ∧ b = ∇ ∧ (u′ ∧ ẑ), (3.1)

since ∇ ∧ (ũ ∧ ẑ) = 0. Equation (3.1) can be integrated immediately to obtain

∇ ∧ b = (u′ ∧ ẑ)− ∇Ψ, (3.2)

where, by taking the divergence, Ψ solves

∇2Ψ = ω′z for R1 < r < R2,

∂rΨ = 0 on r = R1, R2,

}
(3.3)

and ω′z is the z-component of vorticity. The function Ψ is related to the z-component
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of the streamfunction, Φ, for three-dimensional incompressible flow (u = ∇ ∧Φ;
ω = −∇2Φ). The boundary conditions for Φ are determined by the no-slip condition.
Here, Ψ satisfies the homogeneous Neumann boundary condition that there be no
current through the boundaries, r̂ ·∇∧b = 0. The following analysis may differ slightly
for non-insulating boundaries.

The effect of the magnetic field on the fluid is introduced via the Lorentz force,
which can now be written as

L = Q(∇ ∧ b) ∧ ẑ = −Q[u′r, u
′
θ, 0]T − Q[r−1∂θΨ, −∂rΨ, 0]T . (3.4)

The first term on the right-hand side is directly proportional and opposes any flow
across the imposed magnetic field lines. Axial flow is unaffected by the Lorentz force.
Therefore it is not surprising that the flow pattern is found to elongate in this direction
as the strength of the imposed field increases (Chandrasekhar 1961). Taking the curl
of (3.4) gives

∇ ∧ L = Q(∂zu ∧ ẑ − ω′z ẑ)− Q(∇∂zΨ − ω′z ẑ). (3.5)

The ω′z-terms on the right-hand side of (3.4) cancel. It is well known that components
of vorticity perpendicular to an imposed field are preferentially damped. The vorticity
of the underlying circular-Couette flow (CCF) points in the z-direction, so CCF is
unaffected by the imposed magnetic field, and the effective viscosity of the fluid is
unchanged by its presence until the appearance of the Taylor instability.

Taking the dot-product of u′ with (2.7a) and integrating over the volume gives an
energy balance equation for the disturbance. The nonlinear term∫

u′ · (u′ · ∇)u′ dV =
1

2

∫
∇ · (u′2u′) dV (3.6)

vanishes due to the boundary conditions. This term represents the transfer of energy
within the disturbance to higher modes (smaller length scales) by advection. Using
the property ∫

u′ · ∇2u′ dV =

∫
∇ · (u′ ∧ ω′) dV −

∫
ω′ · ω′ dV , (3.7)

where similarly the divergence integral vanishes, the change in kinetic energy can be
written as

1
2
∂t

∫
u′ · u′ dV =

∫
u′ru
′
θ

(
1

r
− ∂r

)
ũθ dV

−
∫
ω′ · ω′ dV − Q

∫
(u′ 2r + u′ 2θ − u′θ ∂rΨ ) dV . (3.8)

As the instability that first appears is initially axisymmetric, azimuthal derivatives
have been ignored in (3.8). For a steady-state solution the terms on the right-hand
side must balance, hence these three terms can be identified as

E1 − E2 − E3 = 0. (3.9)

The first term, E1, is the supply of energy to the disturbance from radial shear of the
circular-Couette flow. The second term, E2, is the viscous dissipation and the third,
E3, is the magnetic damping term.
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4. Stability of CCF in a weak magnetic field
The linear stability of this flow at various radius ratios (Soundalgekar, Ali &

Takhar 1994), for co- and counter-rotating cylinders (Chen & Chang 1998), and at
asymptotically large Q (Chandrasekhar 1961), is a well-studied topic, so we focus
briefly on the behaviour at small Q. In this and the following sections we find that
the magnetic field needs only to be O(10) in order to have a significant affect. By
experimental standards this Q is not very large; experiments with Q > 103 were
performed by Donnelly & Ozima (1962).

The disturbance to the CCF can be decomposed into Fourier modes,

u′(r, z) =
1√
2
u′0(r) +

∞∑
k=1

u′k(r) cos αkz, (4.1)

where 2π/α is the critical wavelength at which the fundamental disturbance (k = 1)
first appears. Due to orthogonality of the cosine function we have

1

2

∫
u′ · u′ dV =

π2

α

∑
k

∫
u′k · u′kr dr, (4.2)

which allows us to consider the contribution of each mode to the energy.
For a disturbance to the fundamental mode of infinitesimal amplitude A1, the

nonlinear term (3.6) will be very small and modes k > 1 can be assumed negligible.
At the critical Reynolds number this disturbance neither grows nor decays and can
be considered in isolation.

With a fixed outer cylinder the energy, E1, supplied to the fundamental disturb-
ance is proportional to Re1, the driving imposed by the inner cylinder. The inviscid
Rayleigh criterion predicts that the flow is unstable for any rotation of the inner
cylinder. The viscous dissipation, E2, prevents the immediate onset of TVF. It orig-
inates from shears within, and so derivatives of, the disturbance. From (3.8) and
(4.1) for the first mode, it is expected that E2 = O(α2A2

1). For a weak magnetic field
the magnetic damping, E3, is O(QA2

1), linearly proportional to Q. Provided that the
magnetic field is not large enough to affect the wavenumber of the flow, we expect
that the critical driving, Rec, at which the instability first appears, to be delayed
linearly with Q. Further, since α ≈ 3 for hydrodynamic flows, if Q = O(10) then E2

and E3 are expected to be of comparable size.
Results of calculations at radius ratios η = 0.65, 0.72, 0.83 are given in figure 1. The

wavenumber decreases approximately linearly by 15% over the not small range of Q
in the figure. For each η the wavenumber α = 3.13, 2.93, 2.70 ± 0.01 at Q = 0, 15, 30
respectively. The delay of transition to Taylor-vortex flow (TVF) remains almost
linear in Q. In the limit Q→ 0 we find that Rec(Q)/Rec(0) = 1 + γQ where γ ≈ 0.0181
for all η in figure 1. As no energy is passed to higher modes for very small A1, the
structure of the disturbance does not change appreciably with Q or η. Therefore the
ratio of magnetic to viscous dissipation remains the same with different η.

5. Nonlinear axisymmetric TVF
In this section we study the nonlinear flows that occur above the first transition. If

the inner cylinder is driven past the critical rate, then energy is quickly transferred to
higher modes by the nonlinear advection. Isolating one of these modes, the dissipative
terms are E2 = O(α2k2A2

k) and E3 = O(γQA2
k). Viscous dissipation quickly becomes
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Figure 1. Delay of onset of TVF by an imposed axial field. Dotted lines are linear extrapolations
from Q small.

0

–5

15

5

10

–10
0 2 4 6 8 10 12

k

ln [E1 (k)]

ln [E2 (k)]

ln [E3 (k)]

Figure 2. Typical spectrum of energy terms. For the first few modes magnetic (dashed) and viscous
(solid) dissipations are comparable. Viscous dissipation dominates the behaviour of higher modes,
and E2/E3 ∝ k2. (Q = 30, η = 0.65, α = 2.71, Re1 = 1.5Rec, Rec = 113.4.)

dominant as energy moves to higher modes. This can be seen in figure 2. However,
magnetic damping remains significant for the fundamental mode, draining energy
before it can be passed to higher wavenumbers. There the fluid viscosity determines
the amplitude of the disturbance. The net result can be seen in figure 3 where we
plot the amplitude of the disturbance at different values of Q. A relatively wide
gap, η = 0.65, was chosen for the calculations, as the axisymmetric flow is stable
to non-axisymmetric perturbations well beyond the onset of TVF. The maximum
axial velocity, rather than the radial velocity, was used to characterize the amplitude
of nonlinear TVF, as the outflow becomes increasingly jet-like as Re1 is increased.
Tabeling (1981) used an amplitude expansion about the point of criticality in the
narrow gap limit to show that in the weakly nonlinear regime A ∝ β(Re1−Rec)

1/2, and
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Figure 3. Square of maximum axial velocity versus Re1 in the presence of imposed axial magnetic
fields. η = 0.65.

that β does not strongly depend on Q. From figure 3 we see that this approximation
is valid well beyond the critical point, even though the nonlinearity affects the flow
pattern.

Kikura, Takeda & Durst (1999) performed experiments to measure fluid velocities
in nonlinear hydromagnetic flow. Their imposed field was different from ours, so
we cannot make a direct quantitative comparison. However, the same order-of-
magnitude arguments for the energy of the harmonics still hold, and the numerical
results presented in this section are qualitatively the same as their experimental results.

Since the magnetic damping is effective only on larger length scales, apart from a
change in wavelength of the flow, the flow pattern of nonlinear axisymmetric TVF
in the presence of an imposed axial field is very similar to that in the hydrodynamic
(non-magnetic) case. This is apparent from figure 3 where the main difference is only
that the onset of TVF is delayed. This can also be seen in figure 4 where (Re1−Rec(Q))
is the same for both plots (with η = 0.83, and (a) Q = 0, Re1 = 1.5Rec(0), α = 3.13;
(b) Q = 20, Re1 = Rec(Q) + 0.5Rec(0), α = 2.85). Although the axial wavelengths
differ, both are plotted the same size for comparison. The azimuthal flow is faster
than CCF (u′θ > 0) in the outflow regions (z = π/α) and slower (u′θ < 0) in the
inflow regions (z = 0, 2π/α). The only clear observable difference is that the fast
azimuthal jet-flow region that occurs at the outflow is slightly larger for the magnetic
flow, in addition to the stretched axial wavelength. However, figure 4(b) is almost
indistinguishable from hydrodynamic flow at the longer wavelength, α = 2.85, where
Re1 = 1.5Rec (not plotted). The deviation from CCF is large; the maximum of u′θ is
approximately 35% of the maximum of ũθ = Re1. The maximum values of |u′r,θ,z| for
all three sets of parameters are within 2%, except for |u′z| in the magnetic flow which
is 8% larger. The Lorentz force has no z-component and so does not damp axial
flow, and therefore the curves in figure 3 are not quite parallel. Despite only small
differences in the flow patterns, only the magnetic flow is stable to non-axisymmetric
disturbances, which is the topic of the next section.

6. The transition to wavy flow
Finding the preferred mode and transitions between fully developed nonlinear

wavy modes is an enormous challenge. For the sake of simplicity, we investigate
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Figure 4. Contours of u′θ at η = 0.83 for (a) Q = 0, Re1 = 1.5Rec(Q = 0), α = 3.13
and (b) Q = 20, Re1 = Rec(Q) + 0.5Rec(0), α = 2.85.

which modes are possible by monitoring the growth or decay of infinitesimal non-
axisymmetric disturbances to the axisymmetric TVF. The disturbance translates in
the azimuthal direction at some fraction of the rotation rate of the inner cylinder –
the wave speed s.

In the hydrodynamic case, Jones (1985) calculated stability boundaries and corre-
sponding wave speeds by solving the eigenvalue problem. The stability of axisymmetric
flow was found to depend strongly on the radius ratio. Figure 5 shows the stability
boundaries and corresponding wave speeds at onset of the wavy modes. The stability
boundaries are shown relative to Rec for the onset of TVF (m = 0). For increasing
Reynolds numbers and η > 0.75, we see that TVF can be destabilized to the m = 1
wavy mode (lower part of the boundary in figure 5a) and then be restabilized by a
further increase of the Reynolds number (upper part of the boundary). Such tran-
sition sequences predicted by Jones’ results were verified experimentally by Park &
Jeong (1984).

The critical Reynolds number for the disappearance of m = 1, 2 modes (upper
boundary) increases rather rapidly as η is increased past about 0.85. Therefore the
choice η = 0.83 was taken for our magnetic calculations.

The magnetic field, imposed axially, has the effect of increasing the critical wave-
length for onset of TVF. Jones (1985) held α fixed at 3.13, but this becomes inappro-
priate for our magnetic calculations. Figure 6 shows the stability of the equilibrated
TVF that appears at the critical wavenumber for the given field strength, α(Q).
The dotted lines are the stability boundaries for bifurcation from CCF, as calcu-
lated by Chen & Chang (1998). The difference between the dotted lines and the
solid lines confirm Jones’ assertion that it is essential to perturb TVF (which must
be computed numerically) to understand the onset of wavy modes. The stability
boundaries for the onset of wavy modes are sensitive to small differences in the
parameters, and the magnetic field does not need to be strong to produce interesting
effects.

The magnetic damping term in (3.8) damps the radial and azimuthal components
of the axisymmetric flow. The curvature of the cylinders also has an additional effect
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Figure 5. (a) Stability of axisymmetric TVF to non-axisymmetric perturbations over a range of η,
as determined by Jones (1985), α = 3.13. (b) Corresponding wave speeds, s, at onset as a fraction
of Ω1. The dotted line is the intersection with the magnetic results at η = 0.83.

on the viscous dissipation of these two components of the velocity. There is a clear
similarity between increasing the imposed magnetic field strength and decreasing the
radius ratio. We do not pursue this relationship very far as the stability boundaries
have not been fully explained, even for hydrodynamic flows. However, significant
progress on the mechanism involved was made by Jones (1985).

Jones (1985) noted that dissipation due to the radial and axial shear within TVF
appears to be an important factor in the stability of the azimuthal jet that appears at
the in- and outflows. The elongation of Taylor cells over the range of Q in figure 6
(by around 10%) might be a factor in the suppression of wavy modes. Antonijoan &
Sánchez (2002) investigated the hydrodynamic stability to wavy modes as a function
of α. The resulting stability boundaries are qualitatively similar to figure 6(a) for
increasing wavelength. However, from the results of Antonijoan & Sánchez (2002),
the change in α over the range for Q in figure 6(a) is a factor of 2–3 smaller than
that required to suppress only the m = 1 mode. The enhanced stability must also be
attributed to magnetic damping of the disturbance.
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Figure 6. For η = 0.83, α = αc(Q): (a) stability of hydromagnetic TVF to non-axisymmetric
perturbations for increasing magnetic field strength, and (b) corresponding wave speeds at onset.
Dotted lines are bifurcations from CCF.

The general trend in figure 5(b) is for the wave speed, s, to decrease with de-
creasing η. For wider gaps there is more fluid in the slower outer regions and the
mean azimuthal flow speed decreases with increasing gap width, as does s. Also, as
the Reynolds number is increased the outflow region narrows and the inflow region
becomes larger than that of the outflow. Therefore the bulk of the fluid is in the
slower inflow region and again the mean azimuthal flow is reduced. This mean-flow
interpretation of the wave speed is consistent with the findings in figure 6(b). Here the
wave speed decreases with increasing Reynolds number, as the outflow still narrows
and the inflow broadens, but the gap width is fixed and there is no additional decrease
in the pattern when the magnetic field strength increases. Compare figure 5(b) for
decreasing η with figure 6(b) for increasing Q.

7. Conclusions
We have investigated magnetic Taylor–Couette flow in the nonlinear regime. In

the presence of an imposed axial magnetic field the Lorentz force is found to have a
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significant damping affect, but only at larger length scales. This is a consequence of
the small magnetic Prandtl number limit, relevant to experiments with liquid metals,
for which the magnetic field is completely defined by the velocity field.

When the imposed field is not too large, the axial wavenumber of the flow is not
greatly affected. In this weak-field regime the stability of circular-Couette flow is
enhanced linearly with Q, Rec(Q)/Rec(0) = 1+γQ where γ appears to be independent
of the gap width.

In the nonlinear regime, magnetic damping affects disturbances at the fundamental
axial wavenumber, but the remaining energy passed to higher modes is dissipated
mainly by the fluid viscosity. This determines the amplitude of the disturbance, which
behaves approximately like β(Re1−Rec(Q))1/2 well beyond the critical point, where β
does not depend strongly on Q. This is consistent with the findings of the amplitude
expansion by Tabeling (1981).

Our main finding is that the magnetic field has its most striking effect on the
stability of TVF to wavy modes. A small field is capable of pushing the secondary
instability from only a few percent above the first instability to several times the
critical Reynolds number for the onset of TVF. This is similar to the relative stability
of TVF to wavy perturbations in wide gaps. As in hydrodynamic flows, the wave
speed decreases with increased Reynolds number, but the dependence of the wave
speed on the imposed field strength does not appear as strong as the dependence on
the gap width.

The significant enhanced stability observed in the calculations above occurs at
only relatively small imposed field strengths, well within the experimental range. As a
secondary bifurcation, the transition to wavy modes is difficult to detect accurately via
torque measurements. A visualization technique, using ultrasound, is being developed
for opaque fluids by Kikura et al. (1999). This type of transition could serve as a
good test for flow visualization in magnetic fluids, where the transitions are accurately
defined. The new technique is of particular interest to those working on dynamo
experiments.

The authors wish to thank Professor Chris Jones for helpful comments and sug-
gestions during this work.
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